US009253117B1

a2z United States Patent (10) Patent No.: US 9,253,117 B1
Poutievski et al. (45) Date of Patent: Feb. 2, 2016
(54) SYSTEMS AND METHODS FOR REDUCING 2006/0053276 Al* 3/2006 Lortzetal.ccoevn 713/2
NETWORK HARDWARE OF A 2007/0147318 Al* 6/2007 Rossetal. 370/338
2009/0161681 Al* 6/2009 Madrahalli et al. 370/401
CENTRALLY-CONTROLLED NETWORK 2011/0103259 Al* 5/2011 Aybayetal. 370/254
USING IN-BAND NETWORK CONNECTIONS 2011/0317701 Al 122011 Yamato et al.
2012/0281698 Al 11/2012 Forster et al.
(71) Applicant: Google Inc., Mountain View, CA (US) 2013/0028070 Al 1/2013 Beheshti-Zavareh et al.
2013/0028142 Al 1/2013 Beheshti-Zavareh et al.
(72) Inventors: Leon Poutievski, Santa Clara, CA (US); 2013/0132531 Al 5/2013 Koponen et al.
Amin Vahdat, Los Altos, CA (US) 2013/0148498 Al 6/2013 Kean et _al.
’ ’ 2013/0223277 Al 82013 Decusatis et al.
. Lo 2013/0230047 Al 9/2013 Subrahmaniam et al.
(73) Assignee: Google Inc., Mountain View, CA (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 McKeown et al., “Open Flow: Enabling Innovation in Campus Net-
U.S.C. 154(b) by 332 days. works”, Mar. 14, 2008, Open Networking Foundation, pp. 1-6.
Notice of Allowance on U.S. Appl. No. 13/718,646 dated Nov. 12,
(21) Appl. No.: 13/718,638 2014.
Office Action on U.S. Appl. No. 13/718,646 dated Aug. 6, 2014.
(22) Filed: Dec. 18, 2012 . .
* cited by examiner
(51) Imt.ClL
HO4L 12/933 (2013.01) Primary Examiner — Kristie Shingles
HO4L 12724 (2006.01) (74) Attorney, Agent, or Firm — Edward A. Gordon; Foley &
HO4L 12/751 (2013.01) Lardner LLP
HO4L 12/26 (2006.01)
(52) US.CL (57) ABSTRACT
CPCcccceee. HO4L 49/15 (2013.01); HO4L 41/12
(2013.01); HO4L 43/10 (2013.01); HO4L 45/02 A network topology system for reducing the hardware links in
(2013.01); HO4L 43/04 (2013.01) a centrally-controlled network having a plurality of network
(58) Field of Classification Search switches and a plurality of centralized controllers controlling
CPC ... HO4L, 41/0823; HO4L 47/10; HO4L 49/20; those switches. The global network of switches and control-
HO4L 41/12; HO4L 43/10; HOAL 45/02; lers is broken up into domains, wherein a domain contains a
HO4L, 49/15 subset of controllers and switches, and a switch in a domain is
USPC e 709/224 controlled by one or more controllers. In-band hardware
See application file for complete search history. links, which carry both data and control information, are used
to connect the controllers and switches in a domain, and
(56) References Cited thereby reduce the number of hardware links from that used in

U.S. PATENT DOCUMENTS

networks which have separate hardware links for both data
and control information.

8,830,823 B2 9/2014 Koponen et al.
2005/0149478 Al* 7/2005 Fahyccooovvivivvnennnnnn. 707/1 28 Claims, 5 Drawing Sheets
_______________ /100
,,,,,,,, DOMAIN R SN
e 115 Mo 120 L
" [SECONDARY MASTER SECONDARY | ™\,
/ CONTROLLER ’ l CONTROLLER ' t CONTROLLER \
151 154
153 155

i
!
i
!
{ 150 162
i
1

§
1
il
1

130
% \‘ SWITCH
AY

135
l SWITCH I/ /
7

\\\ ’//
\\ I,
156 157
™ 140 -

T SWITCH P

US 9,253,117 B1

Sheet 1 of 5

Feb. 2, 2016

U.S. Patent

-
o
e e
R 8 s s e e 0 e VS S

L "B
L HOLIMS T
~ 0¥l
IS1 ~ 951
AN
/ \
HOLIMS HOLIAS
e,
ggl — S gl
681~ eg) - 28\ - 08
\ /
5S1 - 151
\ /
HIATIOHINGD HIATIOHELNOD HITIOHINGD
ASYONODSES HALESYIN AEYONODIZS
" No oo a
T NIVIOQ =

US 9,253,117 B1

Sheet 2 of 5

Feb. 2, 2016

U.S. Patent

Z Big
AT 142
- N \\
€17 ~ Ny L \\\ 012
Go7 657 -
N\ N
5 1
/ HALAYOY
N9 HEOMLEN
/
w | ~— 097
HOSSIN0N HOSSIADOH
MOTINZL0 TOHLINOD
— CONYE-NI
067 A" -~ Gh7
_ [_
A9V L OO IFNEY L ANBO000 HOSSIADOHA
HATIOHINGD HOLUMS NOLLYZUTYIELINI
Gez —711 P (22
Y T IO AHOWEN

g7 ~— GlZ

HIATIOHLINOGD
oLz —

US 9,253,117 B1

Sheet 3 of 5

Feb. 2, 2016

U.S. Patent

¢ Bi4
266~ 158
08—\, o 0%
GoE ~ 09 ~ 578~ 048 — g 7
N
\ \ \
\ \ \
N X 1y
HOSSIEDOH HOSSIADOMA
m@wmwmmm& TOMINGD SOINIQMYMHO
ONY SN LIM00d = ldVaY
HMEHOMILIN
& ..w. w " M ..//f
! ! - 088
S8V L ANFEDY
- MO] MOTENZLO
0pe — e NedD
Geo e - 028
P AHOWANW
0LE
] HOLIAS
008 -

US 9,253,117 B1

Sheet 4 of 5

Feb. 2, 2016

U.S. Patent

S "Bid
HATIOHANDOD HITIOHINGD
oy " -
Nm,w l\\\\\ k4 % T mm‘w
HOLIAS 4 B HOLIAAS

44 \\

\

LEY / Gy

g b v 614

HATHOHINOD HITHOHINOGD HATIOHINGD HATIOHLNOD
@%\ - - 5ot m%\ L \- 5oy

\ e
oEy — — (L%

HOLIAMS .:,/ HOLIMS HOLIAMS - HO LIS
, \

YA \\ N~ A% 4 / Gly 02y \\ Ly / Giy

US 9,253,117 B1

Sheet 5 of 5

Feb. 2, 2016

U.S. Patent

G "Bid

L3 TANGD
NOLLYZITYLLIN

N

S3A - 086

ALv34N MO

ry N,

o

N
=~ QESG

d3ivadn 3igvd

dMACOT H3TIOHINGD

d31vddn 3ngvl
AMACOT HOLIMS

“NOO NAONAND
WO L3N0V
A0

/ OvG

GEG

ON

3 K

S3A

CHOLIMS
WOHS 13M0vd

///wmomﬁm

\
N 676

61§

Z

~ 05
/

CEAE03Y

L AMOVd 3904d

&

AT INOD

US 9,253,117 Bl

1
SYSTEMS AND METHODS FOR REDUCING
NETWORK HARDWARE OF A
CENTRALLY-CONTROLLED NETWORK
USING IN-BAND NETWORK CONNECTIONS

TECHNICAL FIELD

The systems and methods described herein relate to net-
work topology, and particularly, to the reduction of network
infrastructure required to service a network with centralized
control architecture.

BACKGROUND

A network system includes hardware, and supporting soft-
ware, necessary to transmit information between computers.
One can distinguish between a physical hardware link
between two network nodes (computers, switches, routers,
and controllers, among others), and a software connection,
which refers to an established communication channel
between nodes that allows transmitted information to be
understood at both transmission and receiver ends. This is
achieved by having a common routing policy, and implies that
two nodes may be linked by hardware, but unable to connect
or communicate until an initialization procedure has been
carried out to establish a communication channel.

A link may refer to the physical hardware used to join
network nodes, and a network may be a shared local area
network (LAN), wide area network (WAN), metropolitan
area network (MAN), the Internet, or any other type of net-
work or communication system suitable for transferring
information between computer systems. Ethernet is a com-
mon family of technologies using the IEEE standard 802.3 for
local area networking (LAN), and Ethernet network hardware
links (the physical layer) commonly use a Category 5 (Cat 5)
twisted pair Ethernet cable. Alternative hardware link types
include coaxial cables, twisted pair cables categorized in
order of increasing bandwidth from category 1 to category 7,
optical fiber cables, or any other conductor capable of facili-
tating communication between two network nodes. Hardware
links make up alarge amount of the total hardware required to
implement a network. Reduction in the number of links is
desirable from a number of standpoints, including; a capital
cost savings in the setup of the network and replacement of
cabling after failure, and, a reduction in the complexity asso-
ciated with manually ensuring hardware links are connected
correctly.

The operation of network nodes can be conceptually
divided between a data-plane and a control-plane, wherein
the data-plane comprises the physical hardware used to for-
ward data packets through a piece of network hardware, and
the control-plane comprises the software that analyzes data
packets arriving at, for example, a switch port, and executes
certain redirection processes in response to the data packet’s
arrival. The control-plane maintains a routing table, listing all
network addresses reachable from the given switch, and
instructs the data-plane as to how to forward the data packet.

A centrally-controlled network, otherwise referred to as a
software-defined network, is a methodology that allows for
centralized control of a network of nodes from a dedicated
hardware server, referred to as a centralized controller. Alter-
natively, a network may implement logically-centralized con-
trol of nodes, wherein a logically-centralized controller may
be implemented as distributed processes across multiple dif-
ferent central processing units (CPUs) in multiple servers. To
implement centralized control, the control-plane is removed
from individual switches and routers, and replaced by an

20

25

40

45

50

2

OpenFlow agent, which allows for remote control from a
global control plane (otherwise referred to as a centralized
controller, or simply as a controller).

An OpenFlow switch is an example of a network node that
is controlled from a centralized controller. An OpenFlow
switch primarily consists of a flow table, which informs the
switch as to how to process incoming packets, a secure chan-
nel that connects to the global control plane, and the Open-
Flow protocol that enables a centralized controller to com-
municate with the switch. A centralized controller, by using
the OpenFlow protocol, can remotely program switch flow
tables, send packets on any switch port, and receive packets
from any switch port. Methodology for centralized control is
described by OpenFlow, at www.opentlow.org.

The complexity and cost associated with the hardware
links for establishing network connectivity represents a prob-
lem in a centrally-controlled network. Currently, the methods
for establishing network connectivity in a centrally-con-
trolled network include the following two examples.

A first method implements a separate control-plane net-
work (CPN), with all switches and controllers connected to
the CPN using out-of-band (OOB) hardware links such that
there is a dedicated hardware link between a switch and a
controller for control information, and separate hardware
used to send data, where “data” refers to all information not
used for network control. In contrast, an in-band (IB) connec-
tion sends both data and control information on the same
hardware links. The drawback to the use of a CPN is the added
cost associated with the construction and maintenance of the
separate CPN. Furthermore, a separate CPN is likely to have
substantially less redundancy than a data-plane network, due
to the much larger number of hardware links required to
service a data network. The methodology associated with a
CPN can therefore be described as more prone to failure.

A second method for establishing network connectivity in
a centrally-controlled network uses a hybrid model, where, in
addition to the OpenFlow protocol, switches run a routing
protocol (such as Open Shortest Path First (OSPF), or Inter-
mediate System to Intermediate System (IS-IS)). The draw-
back associated with this methodology relates to the extra
switch complexity and configuration that is required to run
the protocol.

As such, there is a need for a more efficient method of
implementing centralized control in a network and for reduc-
ing the network hardware required for the implementation.

SUMMARY

The systems and methods described herein include, among
other things, a network topology system for reducing the
hardware links in a centrally-controlled network.

In one aspect, a system is described as having a domain
with a first and a second network node, controlled by a first
centralized controller. In-band hardware links connect the
network nodes and the centralized controller, and a probe
processor is used to advertise the network address of the
network nodes by communicating probe packets through the
in-band hardware links. A initialization processor in the first
centralized controller is used to receive the probe packets
from the network nodes, and to set-up communication chan-
nels to the network nodes so that data and control information
can be sent between the network nodes and the centralized
controller using the in-band hardware links.

In another implementation, the system has a second cen-
tralized controller with a second initialization processor, for
setting up communication to the first centralized controller
through the in-band hardware links, wherein a network path

US 9,253,117 Bl

3

between the first and the second centralized controllers may
not be direct. The first and second initialization processors
can construct probe packets that advertise the network
addresses of the first and the second centralized controllers,
transmit the probe packets, receive probe packets from the
other respective centralized controller, and set-up a commu-
nication channel to the other respective centralized controller
in response to receiving control packets.

In another implementation, the system may have a master
controller which can control all other controllers and network
nodes in a domain.

The system may designate one of the first or the second
centralized controllers as the master controller, and the non-
designated centralized controller is known as a secondary
controller.

The system may further designate one of the first or the
second centralized controllers as a master controller from
default settings stored in both centralized controllers.

In another implementation, a network node in the system
has an in-band control processor for differentiating between
data and control information received through a single in-
band hardware link.

The system may have a network node lookup table which
maintains a list of the active network nodes in a domain.

In certain implementations, the system has a centralized
controller lookup table in a controller, which stores a list of all
the other active controllers in a domain.

In another implementation, the network nodes may be
switches.

The network nodes may be routers.

The system may use cryptographic authentication to
authenticate a connection made using the initialization pro-
Cessor.

The cryptographic authentication may be secure sockets
layer (SSL) authentication.

The system, in another implementation, differentiates
between data packets and control packets using the in-band
control processor by looking at distinct type of service (ToS)
bits in the packet header.

The system may also differentiate between data packets
and control packets using the in-band control processor by
sending control packets from a specific TCP port number to
another specific TCP port number on the recipient.

In another aspect, the systems and methods described
herein include a method for reducing the hardware links in a
centrally-controlled network. The method achieves this by
grouping a first and a second network node and a first con-
troller into a domain, such that the controller in the domain
can control both the first and second network nodes in the
domain. Connecting the controllers and network nodes are
in-band hardware links. The in-band hardware links carry
both data and control information, and reduce the number of
hardware links from that required in networks which have
separate hardware links for both data and control information.
The method further uses a first initialization processor in the
first controller to set up the control and data connections, and
a probe processor to advertise the network addresses of the
network nodes by communicating probe packets through the
in-band hardware links.

In another implementation, the method has a second cen-
tralized controller with a second initialization processor, for
setting up communication to the first centralized controller
through the in-band hardware links, wherein a network path
between the first and the second centralized controllers may
not be direct. The first and second initialization processors
can construct probe packets that advertise the network
addresses of the first and the second centralized controllers,

15

20

30

35

40

45

55

4

transmit the probe packets, receive probe packets from the
other respective centralized controllers, and set-up a commu-
nication channel to the other respective centralized controller
in response to receiving control packets.

The method may designate one of the controllers in a
domain to be a master controller, and a master controller can
control all of the other controllers and all of the other switches
in a domain.

In another implementation, the method stores a list of
network nodes active in the domain in a network node lookup
table in a centralized controller.

The method may also store a list of centralized controllers
active in the domain in a centralized controller lookup table in
a centralized controller.

The method may authenticate a connection set up by an
initialization processor in a centralized controller by using a
cryptographic protocol.

The cryptographic protocol used to authenticate a connec-
tion set up by an initialization processor may be secure sock-
ets layer (SSL).

The method may differentiate between data and control
information by looking at the type of service (ToS) bits in the
header of a packet send on an in-band hardware link.

In another implementation, the method may differentiate
between data and control information by sending control
information from a specific TCP port number on a sender
node to a specific TCP port number on a recipient node.

BRIEF DESCRIPTION OF THE DRAWINGS

The systems and methods described herein are set forth in
the appended claims. However, for purpose of explanation,
several embodiments are set forth in the following figures.

FIG. 1 is a schematic block diagram of a network domain
of a centrally-controlled network environment which uses
in-band hardware links exclusively, and in which some
embodiments operate;

FIG. 2 is a schematic block diagram of a controller;

FIG. 3 is a schematic block diagram of a centrally-con-
trolled switch;

FIG. 4A-4C are pictorial representations of the establish-
ment of inter-controller reachability;

FIG. 5 is a flow chart diagram of a network initialization
process.

DETAILED DESCRIPTION

In the following description, numerous details are set forth
for purpose of explanation. However, one of ordinary skill in
the art will realize that the embodiments described herein
may be practiced without the use of these specific details and
that these details are not essential to the systems and methods
described herein and that the actual details and features of the
systems and methods will vary depending upon the applica-
tion being addressed. In other instances, well-known struc-
tures and devices are shown in block diagram form to not
obscure the description with unnecessary detail.

The systems and methods described herein include, among
other things, a network topology system for reducing the
hardware links in a centrally-controlled network.

A centrally-controlled network consists of a plurality of
network switches and a plurality of centralized controllers
controlling those switches. A network of switches and con-
trollers may be broken down into domains, wherein a domain
contains a subset of the controllers and switches, and a switch
in a domain may be controlled by one or more controllers.
Connecting the controllers and switches are in-band (IB)

US 9,253,117 Bl

5

hardware links, which carry both data and control informa-
tion, and thereby reduce the number of hardware links from
that used in networks which have separate hardware links for
both data and control information. A centralized controller
has an initialization processor for setting up data connections
and control connections between the centralized controller
and the plurality of network switches. Data information and
control information is combined on the in-band hardware
links using an in-band control processor.

FIG. 1 is a schematic block diagram of a network domain
in a centrally-controlled network environment which uses
in-band hardware exclusively, and in which some embodi-
ments operate. In particular, FIG. 1 depicts a domain 100, a
master controller 110, two secondary controllers 115, 120,
three switches 130, 135, 140, and in-band hardware links
150-157. The term “in-band”, or “IB”, refers to a software
connection that allows both data information and control
information to be communicated across a common hardware
link, wherein the hardware link may be referred to as an
in-band hardware link 150-157.

Control information may include, among others, a request
from a switch (130, 135, or 140) to a centralized controller
(110,115, or 120), for instructions related to an unknown flow
of data packets. The control information may also include
instructions from a centralized controller (110, 115,0r120) to
anetwork switch (130, 135, or 140) as to how to reprogram its
on-board flow table, or information on the health of a network
switch (130, 135, or 140) communicated to a centralized
controller (110, 115, or 120). Data information, as opposed to
control information, is the payload that is communicated
between network nodes, such as switches (130, 135, and 140).

A “packet” is a package of information that is used on layer
3 of the OSI model, and communicated between routers or
switches (130, 135, or 140). Switches (130, 135, or 140) may
also operate on layer 2 of the OSI model, and communicate
information in “frames”, but the terms “frame” and “packet”
may be used interchangeably in the following description,
since a frame is an encapsulation of a packet.

The network hardware depicted in FIG. 1 is part of a larger
network of routers, switches, controllers, and interconnecting
hardware links. Domain 100 is defined as a subset of this
larger network, and domain 100 may have, in some embodi-
ments, greater than or fewer than the depicted three control-
lers 110, 115, 120, and three switches 130, 135, 140. Further-
more, a controller 110, 115, or 120 within the domain 100 can
control one or more switches 130, 135, or 140.

Switch 130 is directly connected to secondary controller
115 by IB hardware link 150, directly connected to master
controller 110 by IB hardware link 152, and directly con-
nected to secondary controller 120 by IB hardware link 154.
Similarly, switch 135 is directly connected to secondary con-
troller 115 by IB hardware link 151, directly connected to
master controller 110 by IB hardware link 153, and directly
connected to secondary controller 120 by IB hardware link
155. Switch 140 is directly connected to switch 130 by IB
hardware link 156, and to switch 135 by IB hardware link
157, such that the direct IB hardware links 156 and 157 may
be used to communicate data information between switches.

Master controller 110, secondary controller 115, and sec-
ondary controller 120 may be implemented using similar
hardware. The master controller 110, however, may execute a
control process that can control secondary controllers 115
and 120, in addition to one or more of switches 130, 135, or
140. This control process may be executed by a CPU 265
associated with master controller 110, and save new instruc-
tions into the OpenFlow processor 250, on secondary con-

10

15

20

25

30

35

40

45

50

55

60

65

6
trollers 115 and 120. These CPU 265 and OpenFlow proces-
sor 250 components are described further in relation to FIG.
2.

Upon establishing a communication channel between two
controllers, such as controller 110 and controller 115, an
initialization processor 220 in each controller 110 and 115
will communicate to designate one of the controllers 110 and
115 as the “master”. In the exemplary embodiment of FIG. 1,
controller 110 is designated as master controller 110.

The designation of a controller 110 as master controller
110 may result from controller 110 being powered on earlier
than controller 115. The initialization processors 220 associ-
ated with controllers 110 and 115 may store timestamps of the
time that the respective controllers 110 and 115 were powered
on. In one implementation, the timestamp stored in initializa-
tion processor 220 of controller 110 is older than that of
controller 115, and controller 110 is designated as master
controller 110 by both the initialization processor 220 asso-
ciated with controller 110 and the initialization processor
associated with controller 115. In another implementation,
controller 110 is designated as the master controller 110 due
to a default value stored in the corresponding initialization
processor 220 that is different to the default value stored in the
initialization processor 220 of controller 115. In yet another
implementation, controller 110 is randomly designated as
master controller 110 once communication has been estab-
lished between the initialization processors 220 in controllers
110 and 115. After a controller has been designated as the
master controller 110 within domain 100, all other controllers
115 and 120 default to a secondary controller designation.

The exemplary implementation depicted in FIG. 1 demon-
strates that a communication channel between two network
nodes may notbe direct. For example, switch 140 is indirectly
connected to secondary controller 115, master controller 110,
and secondary controller 115. One network route connecting
switch 140 and secondary controller 115 uses IB hardware
link 157 to connect switch 140 to switch 135, and IB hardware
link 151 to connect switch 135 to secondary controller 115.

The systems and methods described herein allow indirect
communication of control and data information in domain
100. In FIG. 1, the three controllers 110, 115, and 120, and
three switches 130, 135, and 140, use eight in-band links
150-157. In contrast, the same number of network nodes,
when connected using conventional means, may employ
direct and dedicated control links between each controller
and each network node, and require up to eighteen data and
control links. A typical network domain may include tens or
hundreds of network nodes similar in form and functionality
to network switches 130, 135, and 140, and the systems and
methods described herein may result in significant savings in
terms of'the cost of network link hardware used to implement
control and data connectivity.

FIG. 2 is a schematic block diagram of a controller 210.
Controller 210 is adapted to reduce the number of network
hardware links used to connect network nodes in a centrally-
controlled network, and includes: a memory 215, an initial-
ization processor 220, a switch lookup table 230, a controller
lookup table 235, an in-band control processor 245, an Open-
Flow processor 250, a central processing unit (CPU) 265, a
data bus 255, and a network adapter 260. Network adapter
260, in this exemplary implementation, is embodied with four
hardware interfaces 270-273.

Controller 210 reduces the number of network hardware
links in a network domain, such as network domain 100, by
carrying out an initialization procedure. The initialization
procedure is used to map the network topology of the domain

US 9,253,117 Bl

7

100 using in-band hardware links (150-157) between nodes
110, 115, 120, 130, 135, and 140.

Controller 210 may be similar to master controller 110, or
secondary controllers 115 and 120 from FIG. 1, wherein a
controller 210 is designated the master controller 110 or a
secondary controller 115 or 120 in accordance with the pro-
cesses executed by initialization processor 220, as previously
described. A master controller is designated once a pair of
controllers establishes a communication channel between
one another. This communication channel may be referred to
as controller-to-controller reachability, and controller-to-
controller reachability may be the result of each controller
110, 115 and 120 independently establishing connectivity to
one or more switches 130, 135 and 140 in the domain 100.

A controller 210 is essentially a computer, adapted for the
purposes of remotely controlling network hardware switches.
The controller’s actions are governed by a CPU 265, which
may represent a plurality of processing cores. The hardware
interfaces between the controller 210 and other network
nodes are accommodated by the network adapter 260,
wherein the network adapter 260 comprises the mechanical,
electrical and signaling circuitry to connect the controller 210
to other network nodes. Network adapter 260 may represent a
plurality of network adapters, and the four hardware inter-
faces 270-273 depicted may represent a larger array of inter-
faces.

Memory 215 comprises storage locations that are addres-
sable by CPU 265 and adapters for storing software program
code and data. The memory 215 may comprise a form of
random access memory (RAM) that is generally cleared by a
power cycle or other reboot operation (e.g., it is a “volatile”
memory). In other embodiments, however, the memory 215
may be a non-volatile memory that does not require power to
maintain information. The CPU 265 and adapters may, in
turn, comprise processing elements and/or logic circuitry
configured to execute the software code and manipulate the
data stored in the memory 215.

Initialization processor 220 is configured to execute an
initialization process. This initialization process is triggered
by the receipt of one or more probe packets from one or more
unrecognized network nodes in the network domain that
includes controller 210. An unrecognized network node is
one that does not have an address entry stored in switch
lookup table 230 or controller lookup table 235.

Receipt of probe packets allows the initialization processor
220 to map the network topology of the network domain, and
to establish communication channels across IB hardware
links to the other network nodes, by executing an initializa-
tion process. The following description of an initialization
process may be executed by one or more controllers in a
domain independently, and before or after a master controller
has been designated.

In one practice, it is assumed that a switch, when powered
on, will periodically send out probe packets on all connected
hardware links using a probe processor 365, as described in
relation to FIG. 3. The switch probe packets may be sent as a
broadcast message, and referred to as broadcast probe pack-
ets. In one implementation, these broadcast probe packets are
constructed and sent by the probe processor 365 as IP packets
addressed to a predefined range of IP addresses. This range of
1P addresses encompasses all possible IP addresses within the
network domain of which the switch is a part. In another
implementation, the broadcast probe packets may be sent as a
conventional “limited broadcast” to IPv4 address
“255.255.255.255”. In yet another implementation, the
broadcast probe packets may be sent to IPv6 address “ff02: :
17, which is a multicast address for IPv6 that is equivalent to

10

15

20

25

30

35

40

45

50

55

60

65

8

a broadcast address for IPv4. The broadcast probe packets
contain, among others, the IP address of the sender, such that
they advertise the network address of their sender. In another
practice, the probe processor 365 may construct and send out
switch probe packets as unicast messages.

One or more switch probe packets may be received by the
controller 210. The information contained in these probe
packets includes a source address, which may be the IP
address of the sending switch. This allows the receiving con-
troller 210 to save the addresses of accessible switches in the
switch lookup table 230.

The initialization processor 220 in controller 210 also peri-
odically sends probe packets across all connected IB links,
identifying the controller 210. Similar to the probe packets
sent by the aforementioned switches, the controller probe
packets may be sent as a broadcast message to a range of IP
addresses, as IPv4 “limited broadcast” messages, as [Pv6
special multicast messages, or as unicast messages among
others. These methods communicate the probe packets to all
destinations within the network domain of which controller
210 is a part, and result in one or more switches and other
domain controllers receiving the probe packets, including the
address of the sending controller 210.

Controller 210 maintains a list of live controllers in the
controller lookup table 235. Live controllers are those iden-
tified as actively in-use for network communication, as deter-
mined by receipt, by the initialization processor 220, of peri-
odic probe packets from the respective controller listed in the
controller lookup table 235. Similarly, controller 210 main-
tains a switch lookup table 230, which lists all switches
known to be reachable in the domain within which controller
210 is positioned. Switches are also added to and retained
within the switch lookup table 230 as a result of receipt of
probe packets from respective switches in the domain, by
initialization processor 220.

The following is a description of the initialization process,
as executed by controller 110 from FIG. 1, which has a similar
structure to that of controller 210 from FIG. 2. The initializa-
tion process is executed by controller 110 in response to
receipt of one or more control packets. In the exemplary
implementation depicted in FIG. 1, the one or more control
packets may be received from switches 130 and 135 on IB
links 150 and 151, respectively. Prior to receipt of the one or
more control packets, the controller lookup table 235 associ-
ated with controller 110 stores the IP address of controller 110
only, and the switch lookup table 230 does not contain any
addresses of switches in domain 100.

In response to receipt of the probe packets, controller 110
saves the IP addresses of the sending switches 130 and 135 in
the switch lookup table 230. Next, OpenFlow processor 250
in controller 110 may establish a communication channel to a
respective OpenFlow Agent (OFA) 335 in a switch (as
described in relation to FIG. 3), or to an OpenFlow processor
250 in a respective second controller. The addresses stored in
switch lookup table 230 and controller lookup table 235 rep-
resent active network nodes known to controller 110 to which
communication channels can be established using the Open-
Flow processor 250. Additionally, a communication channel
may be authenticated by the initialization processor 220 using
a cryptographic protocol, such as secure sockets layer (SSL),
and communication across the communication channel may
be handled using conventional OpenFlow methodology, as
recited by OpenFlow.org.

In response to storing a new network node address in
switch lookup table 230 or controller lookup table 235, the
initialization processor 220 executes a flow-update process.
During the flow-update process, the initialization processor

US 9,253,117 Bl

9

220 communicates with the OpenFlow processor 250 to store
updated flows into the flow tables 340 of the switches stored
in switch lookup table 230.

A “flow” 1s a network traffic path with certain characteris-
tics to which a switch responds. These network traffic paths,
or flows, include, among others: (i) a specific transmission
control protocol (TCP) connection, (ii) all packets from a
particular MAC address or IP address, (iii) all packets with
the same VL AN tag, (iv) all packets from a particular same
switch port, or (v) all packets matching a specific header.
Flows are described in greater depth by McKeown et al.,
OpenFlow: Enabling Innovation in Campus Networks (ww-
w.openflow.org, March 2008).

During a flow-update, the initialization processor 220
installs a flow entry in the flow table 340 of a switch, wherein
the flow entry includes a flow leading towards each controller
in the controller lookup table 235. As a result, the switch can
relay network traffic to any controller known to the controller
110 performing the flow-update.

At this point in the description of an exemplary initializa-
tion process for controller 110 from FIG. 1, controller 110 has
established communication channels to switches 130 and
135.

In response to switch 130 receiving a probe packet from
controller 115, the initialization process executes the follow-
ing steps. Switch 130 does not have a flow entry stored in its
flow table 340 that associates a response with packets
received from the address of controller 115. By default, the
OpenFlow protocol of OFA 335 will instruct a switch, such as
switch 130, to pass an unrecognized packet to one or more of
its centralized controllers. In this instance, switch 130 has a
flow entry stored in its flow table 340 representing a commu-
nication channel to controller 110, therefore switch 130
passes the packet to controller 110. Controller 110 does not
recognize the address associated with controller 115, as
stored in the probe packet, since there is no reference to
controller 115 in the controller lookup table 235. Controller
110 adds controller 115 to the controller lookup table 235,
and performs a flow-update, using the initialization processor
220 in communication with OpenFlow processor 250, as
described before. This same sequence repeats if switch 130,
or 135, receives probe packets from controller 120.

Controller 110 also records the time since receipt of the last
probe packet from each controller and each switch in its
controller lookup table 235 and switch lookup table 230,
respectively. After a specified time lapse without receiving a
communication from a respective controller or switch, the
respective controller or switch is assumed to be inactive in
ongoing network communication. This inactive controller or
switch is removed from the controller lookup table 235 or
switch lookup table 230, and a flow-update is performed.

Having established communication channels to directly-
connected switches 130 and 135, controller 110 can establish
communication channels to indirectly-connected switches
one more hop removed from itself, such as switch 140. A
“hop” refers to a link between two network nodes. For
example, link 156 represents a hop between switch 130 and
switch 140.

In order to improve fault-tolerance, a flow-update may
optionally install multiple different network paths towards a
controller in the flow table 340 of a switch. If one path fails in
an attempt to communicate with an associated controller, a
switch will automatically attempt to use one of the other
stored paths.

In certain implementations, a controller 210 includes an
in-band control processor 245. An in-band control processor
245 may be used to combine control and data information on

30

40

45

55

10

a common physical channel, or link. The in-band control
processor 245 may be used to identify an incoming packet as
adata packet or a control packet, and to insert a control packet
into a data packet stream, wherein a stream is a series of data
packets. If a packet is identified as a control packet, the
in-band control processor 245 passes it to the initialization
processor 220.

The in-band control processor 245 may identify packets by
executing a packet recognition process. In one implementa-
tion, this packet recognition process reads the packet header,
wherein the packet header will have distinct type of service
(ToS) bits identifying the packet as data or control informa-
tion. The in-band control processor 245 may also distinguish
between data and control packets by sending control packets
between two specific TCP port numbers on the sender and
recipient network nodes.

The initialization process, upon establishing connectivity
between the two controllers, may designate one as a master
controller, according to designation policies previously
described. The designation of a controller is stored by initial-
ization processor 220 in memory 215, and with regard to FIG.
1, controller 110 is designated master controller 110, and
controllers 115 and 120 default to secondary controllers. If,
however, further controllers are discovered in domain 100, or
if controller 110 fails, this designation may be updated.

OpenFlow processor 250 includes the OpenFlow protocol
for centralized control of a plurality of network switches, as
recited by OpenFlow.org. Using the OpenFlow processor
250, the controller 210 can remotely program switch forward-
ing tables, send packets on any switch port, and receive pack-
ets from any switch port, among other things.

The probe packets, constructed by a probe processor 365 in
a switch 300, may also include a list of network destinations
reachable from the switch 300. After controller 210 sets up a
communication channel to a switch 300 from which one or
more probe packets was received, it may read this network
destination information, and store it in a global routing table
in OpenFlow processor 250. Using this global routing table,
OpenFlow processor 250 can save updated flows to a flow
table 340 on a switch 300, and execute processes to make
routing decisions in response to a switch 300 passing a packet
to controller 210 if it does not have a flow entry associated
with packets of that same type stored in its flow table 340.

In one implementation, master controller 110 can control
all network devices in domain 100, such as switches 130, 135
and 140, and secondary controllers 115 and 120. Domain 100
may form part of a distributed routing protocol, such that a
network device in another domain (not shown) can commu-
nicate with any network device (switches 130, 135 and 140,
and secondary controllers 115 and 120) in domain 100
through master controller 110. The master controller 110
allows domain 100 to have the behavior of a single router
upon connection to another domain, such that packets can be
sent to master controller 110 without having to consider inter-
connections between the network nodes (switches 130, 135,
140, and secondary controllers 115 and 120) in domain 100.

FIG. 3 is a schematic block diagram of a switch 300. In
particular, FIG. 3 depicts a switch 300 that may be used in a
centrally-controlled network, and includes a memory 310, a
CPU 320, a network adapter 330 with four network hardware
interfaces 350-353, an OpenFlow agent 335, a flow table 340,
a packet forwarding processor 345, an in-band control pro-
cessor 360, and a probe processor 365, all linked by data bus
370.

Switch 300 is similar to switches 130, 135, and 140 from
FIG. 1, and configured to reduce dedicated hardware links in
a network domain, such as domain 100. Dedicated hardware

US 9,253,117 Bl

11

links are those that function to carry control information
directly to the switch 300, and switch 300 enables a reduction
in these dedicated hardware links by being able to distinguish
between data packets and control packets sent on a common
hardware link through a network adapter.

A switch 300 is essentially a computer, adapted to transmit
data between client computers in a network. The switch’s 300
actions are governed by a CPU 320, which may represent a
plurality of processing cores. The hardware interfaces
between the switch 300 and other nodes are accommodated
by the network adapter 330, where a network adapter 330
comprises the mechanical, electrical and signaling circuitry
to connect the switch 300 to other network nodes. Network
adapter 330 may represent a plurality of network adapters,
and the four hardware interfaces 350-353 depicted may rep-
resent a larger array of interfaces, where an interface (350-
353) connects to an in-band hardware link.

Memory 310 comprises storage locations that are addres-
sable by CPU 320 and adapters for storing software program
code and data. The memory 310 may comprise a form of
random access memory (RAM) that is generally cleared by a
power cycle or other reboot operation (e.g., it is a “volatile”
memory). In other embodiments, however, the memory 310
may be a non-volatile memory that does not require power to
maintain information. The CPU 320 and adapters may, in
turn, comprise processing elements and/or logic circuitry
configured to execute the software code and manipulate the
data stored in the memory 310.

OpenFlow agent 335 replaces an on-switch control plane,
and allows for communication between the switch 300 and a
controller, such as controller 210. On-switch decisions as to
how to handle a given data flow are made in consultation with
the flow table 340, where the flow table 340 stores flow
entries, which associate a flow with an action. There are three
basic actions that a switch adhering to the OpenFlow protocol
must support, as recited by McKeown et al., OpenFlow:
Enabling Innovation in Campus Networks (openflow.org,
March 2008), and which includes: (1) Forwarding a flow’s
packets to a given port, or ports. (2) Encapsulating and for-
warding a flow’s packets to a controller. Typically this is used
for the first packet in a new flow to allow the controller, such
as controller 210, to decide if the flow should be added to the
flow table 340. (3) Dropping a flow’s packets.

Upon instruction from the controller 210, a new entry can
be made in the flow table 340, which associates an action to be
carried out by switch 300 with a given flow. More particularly,
a flow entry in the flow table 340 includes three fields: (1) a
packet header that defines the flow, (2) an action to be carried
out on the packets that make up a flow, and (3) statistics that
keep track of the number of packets and bytes for each flow,
and the time since the last packet matched the stored flow.
This time can be used to remove inactive flows from flow
table 340.

Switch 300 has an in-band control processor 360 which
allows it to identify an incoming packet as a data packet or an
information packet by looking at the packet header. The
packet header will have distinct type of service (ToS) bits
identifying the packet as data or control information. Alter-
natively, the in-band control processor 360 may distinguish
between data and control packets by sending control packets
between two specific TCP port numbers on the sender and
recipient network nodes.

Switch 300 has a probe processor 365, which will, when
switch 300 is powered-on and physically connected by a
hardware link to another network node, periodically send out
probe packets on all connected hardware links identifying
itself, and wherein the identification may be in the form ofthe

10

15

20

25

30

35

40

45

50

55

60

65

12

IP address associated with the switch 300. These probe pack-
ets are used in the initialization process carried out by a
controller 210, and described in relation to FIG. 2.

A packet, arriving at an interface, such as interface 350 of
switch 300, is received by the in-band control processor 360.
It is this in-band control processor 360 that allows the switch
300 to be indirectly connected to controller 210, and use a
common hardware link for data and control information. The
in-band control processor 360 checks the packet header to
determine the packet type, wherein if the packet is a control
packet, it is passed to the OpenFlow agent 335, and the
OpenFlow agent 335 interprets the control information
within the packet.

If a packet is identified as a data packet by the in-band
processor 360, it is passed to the packet forwarding processor
345. In response, the packet forwarding processor reads the
destination address of the data packet. If there is a cached flow
entry corresponding to the destination address of the data
packet in the flow table 340 of the switch 300, then the
forwarding rules associated with that flow entry are carried
out on the packet. If, however, no flow entry exists for the
packet received, an exception is thrown, and the packet for-
warding processor 345 uses the OpenFlow agent 335 to
request information from controller 210 as to how to process
packets of this new type. The controller 210 returns a for-
warding decision to the switch 300, which is carried out on the
packet by the packet forwarding processor 345, and cached in
the flow table 340 for future packets of that same type.

FIGS. 4A-4C are pictorial representations of the establish-
ment of inter-controller reachability. The processes related to
these pictorial representations are carried out by an initializa-
tion processor, such as initialization processor 220 from con-
troller 210 in FIG. 2, wherein the initialization processor 220
is used to establish communication with other controllersin a
network domain using in-band hardware links only. Once the
initialization process, as described with reference to FIG. 2
for controller 110, has been carried out by all controllers in a
domain, controller-to-controller, or inter-controller reach-
ability is established.

FIG. 4A depicts two controllers, 405 and 410, and two
switches 415, and 420. More particularly, FIG. 4A represents
the independent initialization process by controller 405,
which sets up communication channels 430 and 431 from
controller 405 to switch 415, which is directly-connected to
controller 405, and to switch 420, which is one hop away from
controller 405. Communication channels 430 and 431 use
in-band links. Similarly, FIG. 4B represents the independent
initialization process by controller 410 to set up communica-
tion channels 431 and 432, through in-band links, from con-
troller 410 to switches 415 and 420.

FIG. 4C depicts the resultant connectivity in the network of
switches 415 and 420, and controllers 405 and 410 after both
controllers 405 and 410 have executed independent initializa-
tion processes. Communication channels 430, 431, and 432
communicate data and control information from all domain
switches, 415 and 420, to all domain controllers, 405 and 410.
Controller-to-controller communication is indirect, and
through communication channels 430, 431, and 432. Com-
munication channels 430, 431, and 432 allow probe packets
to be exchanged between controllers 405 and 410, and the
controller lookup table 235 in a given controller 405 and 410
will include all domain controllers 405 and 410.

FIG. 5 is a flow chart diagram of a network initialization
process 500. The initialization process 500 is carried out by a
controller, such as controller 210 from FIG. 2, and starts at
step 510 at a controller, before inter-controller reachability
has been established and before a master controller has been

US 9,253,117 Bl

13

designated. The process proceeds to step 515 where the con-
troller receives a probe packet from an unrecognized sender.
Inresponse, and at step 520, the initialization processor in the
controller determines if the probe packet is from a switch. If
so, the process proceeds to step 525, and the controller
updates its switch lookup table. If the probe packet is not from
a switch, then the process proceeds to step 535, where the
initialization processor determines whether the probe is from
another controller. If the probe is from another controller, the
controller in receipt of the probe packet updates its controller
lookup table at step 540. Step 530 is a flow update, as
described in relation to FIG. 2 before.

Step 545 is a check to determine if the initialization process
is complete, wherein a determination may be made if no
probe packets from unrecognized sources arrive at the con-
troller within a specified timeout period. If an unrecognized
probe packet is received before the timeout period has
elapsed, the process proceeds to step 515, and repeats as
before. It is noted, however, that the initialization process may
complete at step 550, but subsequently the controller may
receive an unrecognized probe packet, such as when new
hardware is added to a network. In such instances, the initial-
ization processor initiates process 500, as before.

Some embodiments of the above described may be conve-
niently implemented using a conventional general purpose or
a specialized digital computer or microprocessor pro-
grammed according to the teachings herein, as will be appar-
ent to those skilled in the computer art. Appropriate software
coding may be prepared by programmers based on the teach-
ings herein, as will be apparent to those skilled in the software
art. Some embodiments may also be implemented by the
preparation of application-specific integrated circuits or by
interconnecting an appropriate network of conventional com-
ponent circuits, as will be readily apparent to those skilled in
the art. Those of skill in the art would understand that infor-
mation and signals may be represented using any of a variety
of different technologies and techniques. For example, data,
instructions, requests, information, signals, bits, symbols,
and chips that may be referenced throughout the above
description may be represented by voltages, currents, elec-
tromagnetic waves, magnetic fields or particles, optical fields
or particles, or any combination thereof.

Some embodiments include a computer program product
comprising a computer readable medium (media) having
instructions stored thereon/in and, when executed (e.g., by a
processor), perform methods, techniques, or embodiments
described herein, the computer readable medium comprising
sets of instructions for performing various steps of the meth-
ods, techniques, or embodiments described herein. The com-
puter readable medium may comprise a storage medium hav-
ing instructions stored thereon/in which may be used to
control, or cause, a computer to perform any of the processes
of'an embodiment. The storage medium may include, without
limitation, any type of disk including floppy disks, mini disks
(MDs), optical disks, DVDs, CD-ROMs, micro-drives, and
magneto-optical disks, ROMs, RAMs, EPROMs,
EEPROMs, DRAMs, VRAMs, flash memory devices (in-
cluding flash cards), magnetic or optical cards, nanosystems
(including molecular memory ICs), RAID devices, remote
data storage/archive/warehousing, or any other type of media
or device suitable for storing instructions and/or data thereon/
in. Additionally, the storage medium may be a hybrid system
that stored data across different types of media, such as flash
media and disc media. Optionally, the different media may be
organized into a hybrid storage aggregate. In some embodi-
ments different media types may be prioritized over other
media types, such as the flash media may be prioritized to

10

15

20

25

30

35

40

45

50

55

60

65

14

store data or supply data ahead of hard disk storage media or
different workloads may be supported by different media
types, optionally based on characteristics of the respective
workloads. Additionally, the system may be organized into
modules and supported on blades configured to carry out the
storage operations described herein.

Stored on any one of the computer readable medium (me-
dia), some embodiments include software instructions for
controlling both the hardware of the general purpose or spe-
cialized computer or microprocessor, and for enabling the
computer or microprocessor to interact with a human user
and/or other mechanism using the results of an embodiment.
Such software may include, without limitation, device driv-
ers, operating systems, and user applications. Ultimately,
such computer readable media further includes software
instructions for performing embodiments described herein.
Included in the programming (software) of the general-pur-
pose/specialized computer or microprocessor are software
modules for implementing some embodiments.

Accordingly, it will be understood that the invention is not
to be limited to the embodiments disclosed herein, but is to be
understood from the following claims, which are to be inter-
preted as broadly as allowed under the law.

Those of skill would further appreciate that the various
illustrative logical blocks, modules, circuits, techniques, or
method steps of embodiments described herein may be
implemented as electronic hardware, computer software, or
combinations of both. To illustrate this interchangeability of
hardware and software, various illustrative components,
blocks, modules, circuits, and steps have been described
herein generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the embodiments described herein.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral-purpose processor, a digital signal processor (DSP), an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

The techniques or steps of a method described in connec-
tion with the embodiments disclosed herein may be embodied
directly in hardware, in software executed by a processor, or
in a combination of the two. In some embodiments, any
software module, software layer, or thread described herein
may comprise an engine comprising firmware or software
and hardware configured to perform embodiments described
herein. In general, functions of a software module or software
layer described herein may be embodied directly in hardware,
or embodied as software executed by a processor, or embod-
ied as a combination of the two. A software module may
reside in RAM memory, flash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a

US 9,253,117 Bl

15

removable disk, a CD-ROM, or any other form of storage
medium known in the art. An exemplary storage medium is
coupled to the processor such that the processor can read data
from, and write data to, the storage medium. In the alterna-
tive, the storage medium may be integral to the processor. The
processor and the storage medium may reside in an ASIC. The
ASIC may reside in a user device. In the alternative, the
processor and the storage medium may reside as discrete
components in a user device.

What is claimed is:

1. A network system, comprising:

a network domain, having a first centralized controller
controlling a first network switch and a second network
switch;

a plurality of in-band network hardware links including at
least (A) a first in-band hardware link between the first
centralized controller and the first network switch, and
(B) a second in-band hardware link between the first
network switch and the second network switch;

a probe processor configured to:
construct a first network node probe packet advertising a

first network switch network address of the first net-
work switch,

construct a second network node probe packet advertis-
ing a second network switch network address of the
second network switch, and

transmit the first and second network node probe packets
through one or more of the plurality of in-band net-
work hardware links; and

a first initialization processor in the first centralized con-
troller, configured to:
receive one or more of the network node probe packets,

and

establish, in response to receiving the second network
node probe packet, connectivity between the first cen-
tralized controller and the second network switch,
through the second in-band hardware link, for com-
munication of data information and control informa-
tion between the first centralized controller and the
second network switch.

2. The network system according to claim 1, further com-

prising:

a second centralized controller having a second initializa-
tion processor, the second centralized controller indi-
rectly connected to the first centralized controller via the
first or the second network switch by one or more hard-
ware links in the plurality of in-band network hardware
links, the second centralized controller controlling one
or more of the first or the second network switches,
wherein the first and the second initialization processors
are further configured to:

(a) construct one or more controller probe packets that
advertise the network address of the first or the second
centralized controller,

(b) transmit the probe packets through one or more of the
plurality of in-band network hardware links,

(c) receive one or more controller probe packets, and

(d) establish, in response to receiving one or more con-
troller probe packets, connectivity to the first or the
second centralized controller identified by the one or
more controller probe packets, such that the plurality
of in-band network hardware links can be used for
communication of data information and control infor-
mation between the first and the second centralized
controllers.

3. The network system according to claim 2, further com-

prising:

10

15

20

25

30

35

40

45

50

55

60

65

16

a master controller controlling a secondary controller and
the first and the second network switches, wherein the
master controller is one of the first centralized controller
or the second centralized controller.

4. The network system according to claim 3, wherein the
master controller is designated from the first and the second
centralized controllers, and the non-designated of the first and
the second centralized controllers is the secondary controller.

5. The network system according to claim 3, wherein one
of'the first or the second centralized controllers is designated
by default settings to be the master controller, and the other is
designated by default settings to be the secondary controller.

6. The network system according to claim 2, further com-
prising:

a centralized controller lookup table in the second central-
ized controller storing references to centralized control-
lers to which connectivity has been established in the
network domain.

7. The network system according to claim 1, further com-

prising:

an in-band control processor in the first network switch or
in the second network switch, the in-band control pro-
cessor configured to distinguish between data and con-
trol information received on an in-band network hard-
ware link.

8. The network system according to claim 7, wherein the
in-band control processor is configured to distinguish
between data information and control information received
on an in-band hardware link using type of service (ToS) bits
in a header of a packet carrying the control or data informa-
tion.

9. The network system according to claim 7, wherein the
in-band control processor is configured to distinguish
between data information and control information received
on an in-band network hardware link by receiving control
information at a specific TCP port number.

10. The network system according to claim 1, further com-
prising:

a network node lookup table in the first centralized con-
troller storing references to one or more network
switches to which connectivity has been established in
the network domain.

11. The network system according to claim 1, wherein one
or more of the first and the second network switches are
network routers.

12. The network system according to claim 1, wherein the
first initialization processor is configured to authenticate an
established connection using a cryptographic protocol.

13. The network system according to claim 12, wherein the
cryptographic protocol is a secure sockets layer (SSL).

14. The network system according to claim 1, wherein at
least one of the network node probe packets includes a list of
network destinations reachable from one of the first or the
second network switch.

15. A method comprising:

grouping a first centralized controller, a first network
switch, and a second network switch into a network
domain;

controlling one or more of the first and the second network
switches from the first centralized controller;

linking, using a plurality of in-band network hardware
links including a first in-band network hardware link and
a second in-band network hardware link, the first cen-
tralized controller and the first network switch using at
least the first in-band hardware link, and linking the first
network switch and the second network switch using at

US 9,253,117 Bl

17

least the second in-band network hardware link between
the first network switch and the second network switch;

constructing, using a probe processor, one or more first
network node probe packets that advertise the network
address of the first network switch and one or more
second network node probe packets that advertise the
network address of the second network switch;

transmitting, using the probe processor, the first and second
network node probe packets through one or more of the
plurality of in-band network hardware links;

receiving, by a first initialization processor in the first cen-
tralized controller, one or more of the first or second
network node probe packets; and

establishing, by the first initialization processor in
response to receiving one or more of the first or second
network node probe packets, connectivity between the
first centralized controller and the second network
switch, through the second in-band hardware link, for
communication of data information and control infor-
mation between the first centralized controller and the
second network switch.

16. The method according to claim 15, further comprising:

controlling one or more of the first or the second network
switches by a second centralized controller having a
second initialization processor, the second centralized
controller indirectly connected to the first centralized
controller via the first or the second network switch by
one or more hardware links in the plurality of in-band
network hardware links;

constructing, by the first or the second initialization pro-
cessor, one or more controller probe packets that adver-
tise the network address of the first or the second cen-
tralized controller;

transmitting, by the first or the second initialization pro-
cessors, the probe packets through one or more of the
plurality of in-band network hardware links;

receiving, by the first or the second initialization proces-
sors, one or more controller probe packets; and

establishing, by the first or the second initialization proces-
sors in response to receiving one or more controller
probe packets, connectivity to the first or the second
centralized controller identified by the one or more con-
troller probe packets, such that the plurality of in-band
network hardware links can be used for communication
of data information and control information between the
first and the second centralized controllers.

17. The method according to claim 16, further comprising:

controlling a secondary controller and the first and the
second network switches by a master controller, wherein

10

15

20

25

30

35

40

45

18

the master controller is one of the first centralized con-
troller or the second centralized controller.

18. The method according to claim 17, further comprising:

designating the master controller from the first and the

second centralized controllers by default settings.

19. The method according to claim 17, further comprising:

receiving, by the master controller, packets from a second

network domain; and

communicating, by the master controller, the packets to the

first network switch or the second network switch.

20. The method according to claim 15, further comprising:

distinguishing, using an in-band control processor,

between data and control information received on an
in-band network hardware link.

21. The method according to claim 20 further comprising:

distinguishing, by the in-band control processor, between

data information and control information received on an
in-band network hardware link by the in-band control
processor using type of service (ToS) bits in a header of
a packet carrying the control or data information.

22. The method according to claim 20, further comprising:

distinguishing, by the in-band control processor, between

data information and control information received on an
in-band hardware link by receiving control information
at a specific TCP port number.

23. The method according to claim 15, further comprising:

storing a reference to one or more of the first and the second

network switches to which connectivity has been estab-
lished in a network node lookup table in the first cen-
tralized controller.

24. The method according to claim 15, further comprising:

storing a reference to the first or the second centralized

controller to which connectivity has been established in
a centralized controller lookup table in the first and the
second centralized controllers.

25. The method according to claim 15, wherein one or
more of the first and the second network switches are network
routers.

26. The method according to claim 15, further comprising:

authenticating an established connection, by the first ini-

tialization processor, using a cryptographic protocol.

27. The method according to claim 26, wherein the cryp-
tographic protocol is secure sockets layer (SSL).

28. The method according to claim 15, wherein at least one
of the network node probe packets includes a list of network
destinations reachable from one of the first or the second
network switch.

